EuroTech Universities

e Technische Universiteit Eindhoven University of Technology

Smart Buildings - Smart Energy Symposium, TU Eindhoven March 14, 2016

Robust Net-Zero Energy Buildings

Rajesh Kotireddy PhD Student

Advisors Prof.dr.ir. Jan Hensen dr.ir. Pieter-Jan Hoes

Where innovation starts

TU

Contents

Introduction

- Problems in low energy buildings
- Need for robust designs
- Methodology
- Case study
- Results robust designs

> Summary

Building codes, frameworks, regulations...

"Low Energy Buildings"

Low energy buildings

Climate adaptive

Energy performance deviation

Turner et al (2008), LEED certified office buildings.

Plausible reasons

Highly insulated and air tight building envelopes

Plausible reasons

Current design practice

Not meeting intended performance in the future

NZEB today ≠ NZEB future

- Risk of failure of energy (e.g. HVAC) systems
- Thermal discomfort

Plausible solution

Robust designs

Computational (building performance and energy system simulation) performance robustness assessment methodology is developed

Building performance and energy system simulation

Performance robustness assessment methodology

Technische Universiteit TU **Eindhoven** University of Technology

Decision makers

Future scenarios

Occupant scenarios

Climate scenarios

TU/e Technische Universiteit Eindhoven University of Technology

Performance assessment

Multi criteria assessment

- Multiple performance indicators
 - 1. Overheating hours [h]
 - 2. Global cost [€/30 years]
 - 3. Additional investment cost [€]

Performance robustness

Selection of robust designs

Identified using methods (e.g. Minimax regret method) adopted from risk analysis, structural design etc.

Decision maker can choose a design based on actual performance and performance robustness and trade off with additional investment cost required for the design

Practical use - suitability and usability assessment with users group

Smits van Burgst

Case study for demonstration of methodology

Existing corner terraced house that needs to be renovated

Case study for demonstration of methodology

Design variants	House built in <i>1992</i>	Renovation measures	
Rc Wall, m²K/W	2.53	3 - 10	A
Rc Roof, m ² K/W	2.53	3 - 10	mm
U window, W/m²K	2.8	2.4 - 0.4	mmmn
nfiltration, ach	1	0.12 - 0.36	(T)
PV system, m ²		16 - 31	
Heating system	Gas boiler	Air source heat pump	
Ventilation system	Mechanical extraction	Balanced system with heat recovery	
DHW system	Gas boiler	Solar, 1 - 6 m ²	1
			Q
Additional investment cost			

Selected renovation options for demonstration

Performance assessment

1. Overheating hours (h)

 \succ T_{indoor} > T_{max}

Weighted for every excess
degree (T_{indoor}-T_{max})*h

Peeters et al., (2009), Applied Energy

2. Additional investment cost (€)

- Cost of renovation (e.g. cost of insulations, windows, air tightness, DHW system, PV system)
- 3. Global cost (€/30 years)
 - Investment + Replacement + Maintenance + Operating costs
 - Calculated for 30 years period service life span of energy systems

Results - global cost

Results - global cost

INTRODUCTION – PROBLEMS – ROBUST DESIGNS – METHODOLOGY – CASE STUDY – **RESULTS** – SUMMARY

HOME OWNERS

Results - overheating hours

Results - Policy maker - CO₂ emission reductions

 CO_2 emissions = Energy consumption × EF – Energy generation × EF

Preferred robust design*

* Preferred robust designs among three selected renovation options. Robust designs might vary if the whole design space is considered.

This work presents a novel methodology for identifying robust building designs

Compared to conventional design practice, this method

- \circ ensures intended performance in the future towards future proof buildings e.g. NZEB _{today} = NZEB _{future}
- guarantees required comfort conditions

Using the current methodology, a decision maker can

- $\,\circ\,$ choose a robust design by prioritizing a performance indicator
- carry out a trade off with robustness of other performance indicators
- o trade off between additional investment to improve:
 - building insulation levels
 - energy generation systems
 - robustness of the design

Thank you Questions?

r.r.kotireddy@tue.nl

Robust buildings

In the present context

"A building is **robust** if it is able to handle uncertainties in building operation and external conditions and delivers intended performance (energy, comfort...)"

In this work, the focus is on performance (energy, comfort etc.) robustness rather than structural robustness of a building

Introduction

Robust building designs

Advantages

- Guarantees required performance for the whole building life span
- Reduces the performance gap between predicted and measured
- Enhances decision making process making informed choices among different building designs